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1. Introduction 

*Many researchers in different fields are keenly 
interested in the study of Bernstein polynomials 
from the day which it was invited to today. These 
studies involve both pure and applied branches as 
mathematics, statistics, numerical analysis, CAGD. 

The n th Bernstein polynomials, named after 
Bernstein (1912), are defined as 

 

Bk,n(x) = (
n
k

) xk(1 − x)n−k,   

 

where (
n
k

) =
n!

k!(n−k)!
 for k ≤ n and x ∈ [0, 1].  

After, about a century later, definition of the 
Bernstein polynomials, the generating function of 
these polynomials was obtained by Acikgoz and 
Araci (2010) as follows: 

 

∑ Bk,n(x)
tn

n!
=

(xt)k

k!
e(1−x)t∞

n=0 , t ∈ ℂ.  

 
Identifying the generating functions is of major 

importance in mathematics and its fields such as 
number theory, combinatorics and so on. By using 
the generating function, the many Bernstein 
polynomials’ properties were obtained. Also, the 
generating function played important role between 
Bernstein polynomials and special numbers and 
polynomials and provided to arise new type 
definitions based on q-calculus (Acikgoz et al., 2010; 
2012; Kim et al., 2010; Simsek, 2013; Simsek, 2017). 
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Let 0 < q < p ≤ 1. The (p, q)-analogue of n is 
defined by  

 

[n]p,q =
pn−qn

p−q
.  

 

When p = 1 reduces to the q- analogue of n and 
also when q → p = 1 reduces to the ordinary 
integers (Chakrabarti and Jagannathan, 1991; Duran, 
2016; Sadjang, 2013). (p, q)- integers are 
generalization of q- integers such that we can write 
[n]p,q as below: 

 
[n]p,q = pn−1[n]q

p

  

 

If we take p = 1, we obtain q-integers but the 
opposite is not true. So, we can not derive [n]p,q by 

the aid of q- integers (Gupta, 2016).  
Recently, the Bernstein polynomials have been 

moved into (p, q)- calculus and are studied by many 
researchers. Mursaleen et al. (2015a) described 
(p, q) -Bernstein polynomials. The (p, q) -Bernstein 
polynomials are defined as below: 

 

Bk,n(x, p, q) = [
n
k

]
p,q

p
(k

2
)−(n

2)
xk(1 − x)p,q

n−k  

 

where 0 < q < p ≤ 1 and (1 − x)p,q
n−k = ∏ (pj −n−k−1

j=0

xqj). In addition, they gave Bernstein-Schurer 
operators, Bernstein-Stancu operators, Bernstein 
Kantorovich operators depend on (p, q)- integers 
(Mursaleen et al., 2015a; 2015b; 2015c). Khan and 
Lobiyal (2015) obtained Lupaş Bernstein 
polynomials on (p, q)- integers and gave their some 
properties with related to parametric curves. Acar et 
al. (2016) proposed Kantorovich modifications of 
(p, q)- Bernstein operators and derived their rate of 
convergence, uniform convergence and 
approximations behaviors. 
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We will explore in the next chapter that 𝔅k,n
p,q

(x) 

polynomials have some properties such as 
generating function, recurrence relations, derivative 
property and an identity with related to two 
important elements of special polynomials and 
numbers. 

2. Main results 

In this part, we see that the generating function 
gives us useful properties about 𝔅k,n

p,q
(x) polynomials. 

Furthermore, we investigate results of these 
polynomials under the (p, q)-calculus.  

 

Definition 2.1: For x ∈ [0,1], k ≤ n and 0 < q < p ≤
1, 

 

𝔅k,n
p,q(x) = (

n
k

) [x]p,q
k [1 − x]p,q

n−k.  

 

If we take p = 1, the 𝔅k,n
p,q

(x) reduces to Kim's 

modified q- Bernstein polynomials. Also, as q → p =
1, the 𝔅k,n

p,q
(x) reduces to ordinary Bernstein 

polynomials. Some cases of the 𝔅k,n
p,q

(x) polynomials 

are shown in Fig. 1. 
  

 
Fig. 1: The 𝔅k,n

p,q
(x) polynomials for special values of p, q, k 

and n 
 

Now, we show that 𝔅k,n
p,q

(x) is described by linear 

combination of two 𝔅k,n−1
p,q

(x) polynomials as below: 
 

Corollary 2.2: For x ∈ [0,1], k ≤ n and 0 < q < p ≤
1, we have 
 

𝔅k,n
p,q(x) = [1 − x]p,q𝔅k,n−1

p,q (x) + [x]p,q𝔅k−1,n−1
p,q

(x)  

 

Proof: By using definition of 𝔅k,n
p,q

(x) and property of 

Binomial coefficients, we obtain, 
 

𝔅k,n
p,q(x) = (

n
k

) [x]p,q
k [1 − x]p,q

n−k = ((
n − 1

k
) +

(
n − 1
k − 1

)) [x]p,q
k [1 − x]p,q

n−k = (
n − 1

k
) [x]p,q

k [1 − x]p,q
n−k +

(
n − 1
k − 1

) [x]p,q
k [1 − x]p,q

n−k = [1 − x]p,q (
n − 1

k
) [x]p,q

k [1 −

x]p,q
n−k−1 + [x]p,q (

n − 1
k − 1

) [x]p,q
k−1[1 − x]p,q

n−k=[1 −

x]p,q𝔅k,n−1
p,q (x)  + [x]p,q𝔅k−1,n−1

p,q (x).  

 

We show that 𝔅k,n
p,q

(x) polynomials have 

symmetric property as below: 
 

Corollary 2.3: For x ∈ [0,1], k ≤ n and  0 < q < p ≤
1, we have 
𝔅n−k,n

p,q (1 − x) = 𝔅k,n
p,q(x)  

Proof: By substituting x → 1 − x and k → n − k into 
above equation, we get 

𝔅n−k,n
p,q (1 − x) = (

n
n − k

) [1 − x]p,q
n−k[1 − 1 + x]p,q

k =

(
n
k

) [x]p,q
k [1 − x]p,q

n−k = 𝔅k,n
p,q(x).  

 
We see that n − k th 𝔅k,n−k

p,q
(x) polynomials are 

obtained by the aid of two n + 1 th 𝔅k,n+1
p,q

(x) 

polynomials by means of at the following corollary: 
 

Corollary 2.4: For x ∈ [0,1], k ≤ n and 0 < q < p ≤
1, we have  
 

(p−x + (1 − p−xq1−x)[x]p,q)𝔅n−k,n
p,q (x) =

(
n−k+1

k
) 𝔅k,n+1

p,q (x) + (
k+1

n+1
) 𝔅k+1,n+1

p,q (x)  

 

Proof: Proof of this corollary follows from definition 
of 𝔅k,n

p,q(x). 

 
The expression of below corollary is to go from 

the k − 1 modified polynomials to k modified 
polynomials n th degree. 

 
Corollary 2.5: For x ∈ [0,1], k ≤ n and 0 < q < p ≤
1, we have  

 

𝔅k,n
p,q(x) = (

n−k+1

k
) (

[x]p,q

[1−x]p,q
) 𝔅k−1,n

p,q
(x)  

 
Proof: By applying the definition of 𝔅k,n

p,q
(x) 

polynomials, we have 
 

𝔅k,n
p,q(x) = (

n
k

) [x]p,q
k [1 − x]p,q

n−k = (
n−k+1

k
) (

n
k − 1

) [x]p,q
k [1 −

x]p,q
n−k = (

n−k+1

k
) (

[x]p,q

[1−x]p,q
) [x]p,q

k−1[1 − x]p,q
n−k+1 =

(
n−k+1

k
) (

[x]p,q

[1−x]p,q
) 𝔅k−1,n

p,q (x).  

 

The desired result is shown. 
In the next corollary, we give the identity by the 

aid of summation of (p, q)- integers and binomial 
expansion, respectively. 

 
Corollary 2.6: For x ∈ [0,1], k ≤ n and 0 < q < p ≤
1, we have 

 

𝔅k,n
p,q(x) = ∑ (

k + l
k

) (
n

k + l
) p−(n+l−k)xq(1−x)l(−1)l[x]p,q

k+l.n−k
l=0   

 

Proof: By using of definition of 𝔅k,n
p,q

(x) and binomial 

formula, we obtain 
 

𝔅k,n
p,q(x) = (

n
k

) [x]p,q
k [1 − x]p,q

n−k = (
n
k

) [x]p,q
k (p−x +

(1 − p−xq1−x)[x]p,q)
n−k

=

(
n
k

) [x]p,q
k ∑ (

n − k
l

) p−(n−k)xp−xlq(1−x)l(−1)l[x]p,q
ln−k

l=0 =

∑ (
k + l

k
) (

n
k + l

) p−(n+l−k)xq(1−x)l(−1)l[x]p,q
k+l.n−k

l=0   

 
Therefore, we arrive at the desired result. 

We give the reflection of 𝔅k,n
p,q

(𝑥) polynomials 

under derivative operator at the following corollary: 
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Corollary 2.7: For 𝑥 ∈ [0,1], 𝑘 ≤ 𝑛 and 0 < 𝑞 < 𝑝 ≤
1, we have 
 
𝑑(𝔅𝑘,𝑛

p,𝑞(𝑥))

𝑑𝑥
= 𝔅𝑘−1,𝑛

𝑝,𝑞 (𝑥) [
[1−𝑥]𝑝,𝑞(𝑞𝑥 𝑙𝑜𝑔 𝑞−𝑝𝑥 𝑙𝑜𝑔 𝑝)

𝑛−𝑘
+

[𝑥]𝑝,𝑞(𝑞1−𝑥 𝑙𝑜𝑔 𝑞−𝑝1−𝑥 𝑙𝑜𝑔 𝑝)

𝑘
].  

 

Proof: Using the definition of derivative, it is seen 
that 
 
𝑑(𝔅𝑘,𝑛

𝑝,𝑞
(𝑥))

𝑑𝑥
= (

𝑛
𝑘

) (
1

𝑞−𝑝
)

𝑛
× [𝑘(𝑞𝑥 − 𝑝𝑥)𝑘−1(𝑞𝑥 𝑙𝑜𝑔 𝑝 −

𝑝𝑥 𝑙𝑜𝑔 𝑞)(𝑞1−𝑥 − 𝑝1−𝑥)𝑛−𝑘 + (𝑛 − 𝑘)(𝑞𝑥 −
𝑝𝑥)𝑘(𝑝1−𝑥 𝑙𝑜𝑔 𝑝 − 𝑞1−𝑥 𝑙𝑜𝑔 𝑞)(𝑞1−𝑥 − p1−𝑥)𝑛−𝑘−1]  

 
and after making some algebraic operations, we 
obtain 
 
𝑑(𝔅𝑘,𝑛

𝑝,𝑞(𝑥))

𝑑𝑥
= (

𝑛
𝑘

) (
1

𝑞−𝑝
)

𝑛
× (𝑞𝑥 − 𝑝𝑥)𝑘−1(𝑞1−𝑥 −

𝑝1−𝑥)𝑛−𝑘−1 ×

[
𝑘(𝑞𝑥 𝑙𝑜𝑔 𝑝 − 𝑝𝑥 𝑙𝑜𝑔 𝑞)(𝑞1−𝑥 − 𝑝1−𝑥) +

(𝑛 − 𝑘)(𝑞𝑥 − 𝑝𝑥) (𝑝1−𝑥 𝑙𝑜𝑔 𝑝 − 𝑞1−𝑥 𝑙𝑜𝑔 𝑞)
] =

(
𝑛
𝑘

) (
1

𝑞−𝑝
)

𝑛−2
[𝑥]𝑝,𝑞

𝑘−1[1 − 𝑥]𝑝,𝑞
𝑛−𝑘−1 × (𝑞𝑥 − 𝑝𝑥)𝑘−1(𝑞1−𝑥 −

𝑝1−𝑥)𝑛−𝑘−1 ×

[
𝑘(𝑞𝑥 𝑙𝑜g 𝑝 − 𝑝𝑥 𝑙𝑜𝑔 𝑞)[1 − 𝑥]𝑝,𝑞 +

(𝑛 − 𝑘)(𝑞𝑥 − 𝑝𝑥) (𝑝1−𝑥 𝑙𝑜𝑔 𝑝 − 𝑞1−𝑥 𝑙𝑜𝑔 𝑞)[𝑥]𝑝,𝑞

] =

𝔅𝑘−1,𝑛
𝑝,𝑞 (𝑥) [

(𝑞𝑥 𝑙𝑜𝑔 𝑝−𝑝𝑥 𝑙𝑜𝑔 𝑞)[1−𝑥]𝑝,𝑞

𝑛−𝑘

+
(𝑝1−𝑥 𝑙𝑜𝑔 𝑝−𝑞1−𝑥 𝑙𝑜𝑔 𝑞)[𝑥]𝑝,𝑞

𝑘

].  

 
Therefore, the proof of corollary is completed. 

3. The generating function of modify (𝐩, 𝐪)-
Bernstein polynomials 

Now, we give the generating function of our 
modified polynomials at the following theorem: 

 
Theorem 3.1: For 𝑥 ∈ [0,1], 𝑘 ≤ 𝑛 and 0 < 𝑞 < 𝑝 ≤
1, we have  
 

𝐹𝑘
𝑝,𝑞(𝑡; 𝑥) = ∑ 𝔅𝑘,𝑛

𝑝,𝑞
(𝑥)

𝑡𝑛

𝑛!
∞
𝑛=0 =

[𝑥]p,𝑞
𝑘 𝑡𝑘

𝑘!
𝑒[1−𝑥]𝑝,𝑞𝑡,  

 
where 𝐹𝑘

𝑝,𝑞(𝑡; 𝑥) is called generating function of 

𝔅𝑘,𝑛
𝑝,𝑞

(𝑥) polynomials. 

 
Proof: The proof follows from the 𝔅𝑘,𝑛

𝑝,𝑞
(𝑥) 

polynomials that  
 

𝐹𝑘
𝑝,𝑞(𝑡; 𝑥) = ∑ 𝔅𝑘,𝑛

𝑝,𝑞
(𝑥)

𝑡𝑛

𝑛!
∞
𝑛=0   

= ∑ (
𝑛
𝑘

) [𝑥]𝑝,𝑞
𝑘 [1 − 𝑥]𝑝,𝑞

𝑛−𝑘∞
𝑛=0

𝑡𝑛

𝑛!
  

=
[𝑥]𝑝,𝑞

𝑘 𝑡𝑘

𝑘!
∑ [1 − 𝑥]𝑝,𝑞

𝑛−𝑘∞
𝑛=0

𝑡𝑛−𝑘

(𝑛−𝑘)!
  

=
[𝑥]𝑝,𝑞

𝑘 𝑡𝑘

𝑘!
∑ [1 − 𝑥]𝑝,𝑞

𝑛∞
𝑛=𝑘

𝑡𝑛

𝑛!
=

[𝑥]𝑝,𝑞
𝑘 𝑡𝑘

𝑘!
𝑒[1−𝑥]𝑝,𝑞𝑡.   

 
This ends the proof. 

 
The generating function is shown for special 

values of 𝑝, 𝑞 and 𝑘 in Fig. 2. 

 
Fig. 2: The generating function of 𝔅𝑘,𝑛

𝑝,𝑞
(𝑥) polynomials for 

special values of 𝑝, 𝑞, 𝑘 and 𝑛 

 
The modified (𝑝, 𝑞)- Bernstein polynomials have 

the following properties with related to the 
generating function. 

 
Corollary 3.2: For 𝑥 ∈ [0,1], 𝑘 ≤ 𝑛 and 0 < 𝑞 < 𝑝 ≤
1, we have 
 
𝜕𝑣(𝐹𝑘

𝑝,𝑞(𝑡;𝑥))

𝜕𝑡𝑣
= ∑ 𝔅𝑗,𝑣

𝑝,𝑞(𝑥)𝐹𝑘−𝑗
𝑝,𝑞 (𝑡; 𝑥)𝑣

𝑗=0 .  

 
Proof: To show proof of this corollary, let 𝐹𝑘

𝑝,𝑞(𝑡; 𝑥) 

be as follow: 
 

𝐴 =
[𝑥]𝑝,𝑞

𝑘 𝑡𝑘

𝑘!
, 𝐵 = 𝑒[1−𝑥]𝑝,𝑞𝑡.  

 
By applying the Leibniz rule to 𝐹𝑘

𝑝,𝑞(𝑡; 𝑥) depend 
on 𝑡, we have 
  
𝜕𝑣(𝐹𝑘

𝑝,𝑞
(𝑡;𝑥))

𝜕𝑡𝑣
  

= ∑ (
𝑣
𝑗)

[𝑥]𝑝,𝑞
𝑘 𝑡𝑘−𝑗

(𝑘−𝑗)!
[1 − 𝑥]𝑝,𝑞

𝑣−𝑗
𝑒[1−𝑥]𝑝,𝑞𝑡𝑣

𝑗=0   

= ∑ (
𝑣
𝑗) [𝑥]𝑝,𝑞

𝑗 [1 − 𝑥]𝑝,𝑞
𝑣−𝑗 [𝑥]𝑝,𝑞

𝑘−𝑗
𝑡𝑘−𝑗

(𝑘−𝑗)!
𝑒[1−𝑥]𝑝,𝑞𝑡𝑣

𝑗=0   

= ∑ 𝔅𝑗,𝑣
𝑝,𝑞(𝑥)𝐹𝑘−𝑗

𝑝,𝑞 (𝑡; 𝑥)𝑣
𝑗=0 .  

 

Therefore, we obtain the desired result. 
 

Corollary 3.3: For 𝑥 ∈ [0,1], 𝑘 ≤ 𝑛 and 0 < 𝑞 < 𝑝 ≤
1, we have 
 

(𝑝−𝑥 + (1 − 𝑝−𝑥𝑞1−𝑥)[𝑥]𝑝,𝑞)𝔅𝑘,𝑛
𝑝,𝑞

(𝑥) 

=
1

𝑛 + 1
((𝑘 + 1)𝔅𝑘+1,𝑛+1

𝑝,q (𝑥)) 

+(𝑛 + 1 − 𝑘)𝔅𝑘,𝑛+1
𝑝,𝑞 (𝑥). 

 

Proof: Firstly, we consider the following identity 
from the generating function of 𝔅𝑘,𝑛

𝑝,𝑞
(𝑥), 

 

([𝑥]𝑝,𝑞𝑡)
𝑏

𝐹𝑘
𝑝,𝑞(𝑡; 𝑥) =

(𝑘+𝑏)!

𝑘!
𝐹𝑘

𝑝,𝑞(𝑡; 𝑥).  

 
From above equation, we obtain 

 

[𝑥]𝑝,𝑞
𝑏 𝔅𝑘,𝑛

𝑝,𝑞(𝑥) =
𝑛!(𝑘+𝑏)!

𝑘!(𝑛+𝑏)!
𝔅𝑘+𝑏,𝑛+𝑏

𝑝,𝑞 (𝑥).  

 
If we take 𝑏 = 1 at the above equation, 

[𝑥]𝑝,𝑞𝔅𝑘,𝑛
𝑝,𝑞(𝑥) =

𝑘+1

𝑛+1
𝔅𝑘+1,𝑛+1

𝑝,𝑞 (𝑥).                   (1) 
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On the other hand, the generating function can be 
rewritten in the following form: 
 

([𝑥]𝑝,𝑞𝑡)
−𝑏

𝐹𝑘
𝑝,𝑞(𝑡; 𝑥) =

(𝑘−𝑏)!

𝑘!
𝐹𝑘−𝑏

𝑝,𝑞 (𝑡; 𝑥).  

 

By aid of the definition of generating function, we 
have 
 

[1 − 𝑥]𝑝,𝑞
𝑏 𝔅𝑘,𝑛

𝑝,𝑞(𝑥) =
𝑛!(𝑛+𝑏−𝑘)!

(𝑛−𝑘)!(𝑛+𝑏)!
𝔅𝑘,𝑛+𝑏

𝑝,𝑞 (𝑥).  

 

By choosing 𝒃 = 𝟏 at the above equation, we get 
 

[1 − 𝑥]𝑝,𝑞𝔅𝑘,𝑛
𝑝,𝑞(𝑥) =

(𝑛+1−𝑘)

(𝑛+1)
𝔅𝑘,𝑛+1

𝑝,𝑞 (𝑥).                    (2) 

 

Combining Eq. (1) and Eq. (2), we arrive the desired 
result. 

 
Corollary 3.4: For 𝑥 ∈ [0,1], 𝑘 ≤ 𝑛 and 𝟎 < 𝒒 < 𝒑 ≤
𝟏, we have 
 

∑ (
𝑛
𝑗 ) 𝔅𝑘,𝑛−𝑗

𝑝,𝑞 (𝑥)(𝑝−𝑥𝑞1−𝑥)𝑗[𝑥]𝑝,𝑞
𝑗−𝑘

𝑛−𝑘

𝑗=0

= 𝑝−𝑥(𝑛−𝑘) (
𝑛
𝑘

) 

 

Proof: From the definition of generating function, we 
observe that; 
 

∑ 𝔅𝑘,𝑛
𝑝,𝑞(𝑥)

𝑡𝑛

𝑛!
e(𝑝−𝑥𝑞1−𝑥[𝑥]𝑝,𝑞)𝑡 =

[𝑥]𝑝,𝑞
𝑘 𝑡𝑘

𝑘!
𝑒𝑝−𝑥𝑡

∞

𝑛=0

. 

 
On the other hand, it is easy to see that 
 

∑ 𝔅𝑘,𝑛
𝑝,𝑞(𝑥)

𝑡𝑛

𝑛!
∑ (𝑝−𝑥𝑞1−𝑥)𝑛 [𝑥]𝑝,𝑞

𝑛

𝑛!
∞
𝑛=0

∞
𝑛=0 =

[𝑥]𝑝,𝑞
𝑘 𝑡𝑘

𝑘!
∑

(𝑝−𝑥𝑡)𝑛

𝑛!
∞
𝑛=0 .  

 

Then we apply the Cauchy product and compare 

coefficients of 
𝒕𝒏

𝒏!
 as follows: 

 

∑ (∑ (
𝑛
𝑗 ) 𝔅𝑘,𝑛−𝑗

𝑝,𝑞
(𝑥)(𝑝−𝑥𝑞1−𝑥)𝑗[𝑥]𝑝,𝑞

𝑗𝑛−𝑘
𝑗=0 )∞

𝑛=𝑘
𝑡𝑛

𝑛!
=

[𝑥]𝑝,𝑞
𝑘 ∑ 𝑝−𝑥(𝑛−𝑘) (

𝑛
𝑘

)
𝑡𝑛

𝑛!
.∞

𝑛=𝑘   

 

Thus, the proof is completed. 
 
Theorem 3.5: For 𝑥 ∈ [0,1], 𝑘 ≤ 𝑛 and 0 < 𝑞 < 𝑝 ≤
1, we have 
 

∑ (
𝑛
𝑙

) (−𝑝−𝑥)𝑙𝑛−𝑘
𝑙=0 𝔅𝑘,𝑛−𝑙

𝑝,𝑞
(𝑥) =

(
𝑛
𝑘

) (−1)𝑛−𝑘(𝑝−𝑥𝑞1−𝑥)𝑛−𝑘[𝑥]𝑝,𝑞
𝑛 .  

 

Proof: If we arrange the generating function, we 
have 
 

(∑ 𝔅𝑘,𝑛
𝑝,𝑞

(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

) 𝑒−𝑝−𝑥𝑡 =
[𝑥]𝑝,𝑞

𝑘 𝑡𝑘

𝑘!
𝑒(−𝑝−𝑥𝑞1−𝑥[𝑥]𝑝,𝑞)𝑡. 

 

After the Taylor series generated for 𝑒−𝑝−𝑥𝑡 , we 
get 

(∑ 𝔅𝑘,𝑛
𝑝,𝑞

(𝑥)
𝑡𝑛

𝑛!
∞
𝑛=0 ) (∑ (−1)𝑛(𝑝−𝑥)𝑛 𝑡𝑛

𝑛!
∞
𝑛=0 ) =

[𝑥]𝑝,𝑞
𝑘 𝑡𝑘

𝑘!
(∑ (−1)𝑛(𝑝−𝑥𝑞1−𝑥[𝑥]𝑝,𝑞)

𝑛 𝑡𝑛

𝑛!
∞
𝑛=0 ).  

 

By applying the Cauchy product both sides of above 
equality, we obtain  
 

∑ (∑ (
𝑛
𝑙

) 𝔅𝑘,𝑛−𝑙
𝑝,𝑞

(𝑥)(−𝑝−𝑥)𝑙𝑛−𝑘
𝑙=0 )∞

𝑛=𝑘
𝑡𝑛

𝑛!
=

[𝑥]𝑝,𝑞
𝑘 𝑡𝑘

𝑘!
∑ (−1)𝑛(𝑝−𝑥𝑞1−𝑥[𝑥]𝑝,𝑞)

𝑛 𝑡𝑛

𝑛!
.∞

𝑛=0   

 

By comparison of coefficients of 
𝒕𝒏

𝒏!
, the proof is 

completed. 

4. Relations between modify (𝐩, 𝐪)-Bernstein 
polynomials and special polynomials 

In this section, we obtain some equalities 
interested in the modify polynomials the Euler 
polynomials, the Bernoulli polynomials and the 
Stirling numbers of the second kind. 

 
Theorem 4.1: 

 

∑ (
𝒏
𝒌

) 𝕭𝒌,𝒏
𝒑,𝒒

(𝒙)𝑬𝒏−𝒌 =
[𝒙]𝒑,𝒒

𝒌

𝒌!
𝑮𝒏

(𝒌)
([𝟏 − 𝒙]𝒑,𝒒)𝒏

𝒌=𝟎 .  

 
Proof: By using the generating function of 𝔅𝑘,𝑛

𝑝,𝑞
(𝑥), 

we have 
 

∑ 𝔅𝑘,𝑛
𝑝,𝑞(𝑥)

𝑡𝑛

𝑛!
=

[𝑥]𝑝,𝑞
𝑘 𝑡𝑘

𝑘!
𝑒[1−𝑥]𝑝,𝑞𝑡∞

𝑛=0   

=
[𝑥]𝑝,𝑞

𝑘 𝑡𝑘

𝑘!
𝑒[1−𝑥]𝑝,𝑞𝑡 (𝑒𝑡+1)

𝑘
2𝑘

(𝑒𝑡+1)𝑘2𝑘
  

= (
2𝑡

𝑒𝑡+1
)

𝑘
𝑒[1−𝑥]𝑝,𝑞𝑡 [𝑥]𝑝,𝑞

𝑘

𝑘!2𝑘
(𝑒𝑡 + 1)𝑘  

=
(

2𝑡

𝑒𝑡+1
)

𝑘
𝑒[1−𝑥]𝑝,𝑞𝑡

2𝑘

(𝑒𝑡+1)
𝑘

[𝑥]𝑝,𝑞
𝑘

𝑘!
  

=
∑ 𝐺𝑛

(𝑘)
([1−𝑥]𝑝,𝑞)

𝑡𝑛

𝑛!
∞
𝑛=0

∑ 𝐸𝑛
𝑡𝑛

𝑛!
∞
𝑛=0

[𝑥]𝑝,q
𝑘

𝑘!
,  

 
where the generating functions of the Genocchi 
polynomials and the Euler numbers are defined as 
follows: 
 

2𝑡

𝑒𝑡 + 1
𝑒𝑥𝑡 = ∑ 𝐺𝑛(𝑥)

𝑡𝑛

𝑛!
, |𝑡| < 𝜋

∞

𝑛=0

 

 

and 
 

2

𝑒𝑡 + 1
= ∑ 𝐸𝑛

𝑡𝑛

𝑛!
, |𝑡| < 𝜋

∞

𝑛=0

. 

 

If we arrange the above equality, we get  
 

(∑ 𝔅𝑘,𝑛
𝑝,𝑞(𝑥)

𝑡𝑛

𝑛!
∞
𝑛=0 ) (∑ 𝐸𝑛

𝑡𝑛

𝑛!
∞
𝑛=0 ) = ∑ 𝐺𝑛

(𝑘)
([1 −∞

𝑛=0

𝑥]𝑝,𝑞)
𝑡𝑛

𝑛!

[𝑥]𝑝,𝑞
𝑘

𝑘!
.  

 

Thereby, by applying the Cauchy product for above 

equality and then comparison the coefficients of 
𝐭𝐧

𝐧!
, 

we complete the proof. 
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Theorem 4.2: 
  

𝔅k,n
p,q(x) = [x]p,q ∑ (

n
l
) Bl

(k)
([1 − x]p,q)S(n − k, l)n

l=0   

 

Proof: By aid of the 𝕭𝐤,𝐧
𝐩,𝐪(𝐱) polynomials, we get 

 

∑ 𝔅k,n
p,q(x)

tn

n!
=

[x]p,q
k tk

k!
e[1−x]p,qt

∞

n=0

 

=
[x]p,q

k tk

k!
e[1−x]p,qt

(et − 1)k

(et − 1)k
 

= (
t

et − 1
)

k

e[1−x]p,qt
(et − 1)k

k!
[x]p,q

k  

= ∑ Bn
(k)

([1 − x]p,q)
tn

n!

∞

n=0

∑ S(n, k)
tn

n!
,

∞

n=0

 

 

where the generating function of the Bernoulli 
polynomials and the second kind Stirling numbers 
are defined at the following equalities: 
 

t

et−1
ext = ∑ Bn(x)

tn

n!
, |t| < 2π∞

n=0   

 
and 

 

(et+1)
k

k!
= ∑ S(n; k)

tn

n!
∞
n=0 .  

 

By applying the Cauchy product at above equation as 
in the previous corollary, the desired result is 
obtained. 

5. Conclusion 

In this study, we extended the Bernstein 
polynomials to new type (p, q)-Bernstein 
polynomials. We also obtained some useful 
properties such as the generating function, 
symmetric function, recurrence relations and 
equalities under the derivative operators for these 
polynomials. We plotted the graphs of these 
polynomials and their generating function. 
Furthermore, some of our results are generalizations 
results in Kim et al. (2010) and Simsek (2017). 
Because of the Bernstein polynomials are very useful 
in many different fields such as statistics, 
engineering and CAGD, these new polynomials can 
be used in the mentioned areas. 
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